

Aseptic Isolated Filling Line, QRM approach and case study

The Comecer and IBI Project

PDA Italy Chapter Aseptic Filling: Innovazioni tecnologice e trend regolatori Bologna, April,11th, 2019

Simone Penazzi, Luca Pezzano Comecer, IBI

- IBI Company Profile
- Project Background: Espresso Concept
- Collaboration: The importance to share competences
- Process Analysis
- Process Splitting
- Process Risk Analysis
- Lesson Learned

IBI Company Profile

Founded in 1918 by Prof. Giovanni Lorenzini, IBI exports worldwide its drug products manufactured according to cGMP standards.

Sterile Penicillin Productions

(API) 150 K/year

deem Direction Europeene de la ALA

Aseptic filling of liquids, vials, prefilled-syringe, lyophilization

Integrated

Aseptic filling capacity of

powders 45 mln/year

Nanoparticles

Business lines

Connecting People, Science and Regulation®

Biotech

Espresso[®] is ready to mix solution, consisting of a standard vial and a diluent bag assembled under sterile conditions. The Espresso[®] bag is equipped with a patented connector and each connector with a spike, able to penetrate from the bag to the vial, allowing to activate communication between the two containers under sterile condition.

Collaboration: The importance to share competences

"Adam Smith said the best result comes from everyone in the group doing what's best for himself. Right? That's what he said, right? [...] Incomplete. Incomplete, okay? Because the best result will come from <u>everyone in the group doing what's best for himself ... and the group.</u>"

> John Nash A beautiful mind

5

Collaboration: The importance to share competences Theory of games: Nash equilibrium

Pareto efficiency: the ADDIE Model

8

Process Analysis: The Starting Point

Process Analysis: Preliminary Drawing

- B: Bags feeding
- C: Filling, capping & Coupling
- **D:** Bags Crimping
- E: Labeling

Preliminary drawing: Pressure cascade analysis

A

Process Analysis: Actual Drawing

- B: Bags feeding
- C: Filling, Capping & Coupling
- D: Bags Crimping
- E: Labeling

12

Process Analysis: The Optimized Process

14

3D Rendering

Process Splitting: The Mock-up

- Step by step analysis
- Process core tested: ergonomics, usability and space organization

• Functionality area definition

Risk Assessment for air monitoring points

Step 1

- Audit
- Process Analysis
- •Functional area
- HACCP Analysis

Step 2

- Definition of all the possible sampling location
- •FMEA analysis
- Sampling point definition

Step 3

- •Frequency definition
- •Monitoring Plan definition

Step 4

- Monitoring methodologies:
- •Total particles
- Passive air sampling
- •Active air sampling

Recommendation & Action

Process Risk Analysis: Structured Approach

- Visual analysis (fishbone)
- Fish head = defect
- Ribs = Major categories
 - Men
 - Material
 - Machine
 - Methods
 - Mother Nature
- Sub-ribs = root causes

Process Risk Analysis: Structured Approach

- Fishbone for finding the root causes
- Defect = Contaminated liquid drug product
- Major categories
 - Chemical contamination
 - Physical contamination
 - Microbiological contamination

FMEA Method

The selection of "critical" action to perform was based on the calculation of a number that reflects the "risk" the product will be contaminated by a major category. This "risk" was expressed via the Risk Priority Number (RPN):

- Evaluation of the knowledge of the process;
- Evaluation of the probability to contaminate with the operation;
- Evaluation of the severity of the contamination;
- The evaluation of the detectability methods in place.

Risk Matrix

Risk Category	Risk Category Description
UNACCEPTABLE	High Risks that are above the acceptability threshold must be reduced through risk control measures: It's necessary to modify the design or perform a study/validation
ACCEPTABLE when justified	Medium Risk is acceptable when justified: It's necessary improve the knowledge during the validation phase.
ACCEPTABLE	Low Risk is acceptable. It's not necessary to take actions

RA for SP
H_2O_2 decontamination
Detergents/Sanitizers
Cleaning tools
Cleanability
Design
Materials

- Materials: Stainless steel typology Plastic typologies
- Design:
 - Worktop
 - Machine top
 - Conveyor belts and roundabouts
- Cleanability
 - Exhaust grids
 - Conveyor belts and roundabouts
 - Moving parts
- Hydrogen Peroxide decontamination
 - Definition of the cycle
 - Coverage study

Lesson Learned

Applying 360° QRM and Team Work Approach your mind is so open that once you arrive to a solution

You just see a new opportunity for improvement

24

Acknowledgements